Altered sulfide (H(2)S) metabolism in ethylmalonic encephalopathy.
نویسندگان
چکیده
Hydrogen sulfide (sulfide, H(2)S) is a colorless, water-soluble gas with a typical smell of rotten eggs. In the past, it has been investigated for its role as a potent toxic gas emanating from sewers and swamps or as a by-product of industrial processes. At high concentrations, H(2)S is a powerful inhibitor of cytochrome c oxidase; in trace amounts, it is an important signaling molecule, like nitric oxide (NO) and carbon monoxide (CO), together termed "gasotransmitters." This review will cover the physiological role and the pathogenic effects of H(2)S, focusing on ethylmalonic encephalopathy, a human mitochondrial disorder caused by genetic abnormalities of sulfide metabolism. We will also discuss the options that are now conceivable for preventing genetically driven chronic H(2)S toxicity, taking into account that a complete understanding of the physiopathology of H(2)S has still to be achieved.
منابع مشابه
Effective AAV-mediated gene therapy in a mouse model of ethylmalonic encephalopathy
Ethylmalonic encephalopathy (EE) is an invariably fatal disease, characterized by the accumulation of hydrogen sulfide (H(2)S), a highly toxic compound. ETHE1, encoding sulfur dioxygenase (SDO), which takes part in the mitochondrial pathway that converts sulfide into harmless sulfate, is mutated in EE. The main source of H(2)S is the anaerobic bacterial flora of the colon, although in trace amo...
متن کاملArabidopsis ETHE1 encodes a sulfur dioxygenase that is essential for embryo and endosperm development.
Mutations in human (Homo sapiens) ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) result in the complex metabolic disease ethylmalonic encephalopathy, which is characterized in part by brain lesions, lactic acidemia, excretion of ethylmalonic acid, and ultimately death. ETHE1-like genes are found in a wide range of organisms; however, the biochemical and physiological role(s) of ETHE1 have not bee...
متن کاملCharacterization of patient mutations in human persulfide dioxygenase (ETHE1) involved in H2S catabolism.
Hydrogen sulfide (H(2)S) is a recently described endogenously produced gaseous signaling molecule that influences various cellular processes in the central nervous system, cardiovascular system, and gastrointestinal tract. The biogenesis of H(2)S involves the cytoplasmic transsulfuration enzymes, cystathionine β-synthase and γ-cystathionase, whereas its catabolism occurs in the mitochondrion an...
متن کاملCrystal structure of human persulfide dioxygenase: structural basis of ethylmalonic encephalopathy
The ethylmalonic encephalopathy protein 1 (ETHE1) catalyses the oxygen-dependent oxidation of glutathione persulfide (GSSH) to give persulfite and glutathione. Mutations to the hETHE1 gene compromise sulfide metabolism leading to the genetic disease ethylmalonic encephalopathy. hETHE1 is a mono-iron binding member of the metallo-β-lactamase (MBL) fold superfamily. We report crystallographic ana...
متن کاملEthylmalonic Encephalopathy ETHE1 R163W/R163Q Mutations Alter Protein Stability and Redox Properties of the Iron Centre
ETHE1 is an iron-containing protein from the metallo β-lactamase family involved in the mitochondrial sulfide oxidation pathway. Mutations in ETHE1 causing loss of function result in sulfide toxicity and in the rare fatal disease Ethylmalonic Encephalopathy (EE). Frequently mutations resulting in depletion of ETHE1 in patient cells are due to severe structural and folding defects. However, some...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cold Spring Harbor perspectives in biology
دوره 5 1 شماره
صفحات -
تاریخ انتشار 2013